Bounded Gaps between Primes in Number Fields and Function Fields
نویسندگان
چکیده
The Hardy–Littlewood prime k-tuples conjecture has long been thought to be completely unapproachable with current methods. While this sadly remains true, startling breakthroughs of Zhang, Maynard, and Tao have nevertheless made significant progress toward this problem. In this work, we extend the Maynard-Tao method to both number fields and the function field Fq(t).
منابع مشابه
Bounded gaps between prime polynomials with a given primitive root
A famous conjecture of Artin states that there are infinitely many prime numbers for which a fixed integer g is a primitive root, provided g 6= −1 and g is not a perfect square. Thanks to work of Hooley, we know that this conjecture is true, conditional on the truth of the Generalized Riemann Hypothesis. Using a combination of Hooley’s analysis and the techniques of Maynard-Tao used to prove th...
متن کاملBounded Gaps between Primes in Multidimensional Hecke Equidistribution Problems
Using Duke’s large sieve inequality for Hecke Grössencharaktere and the new sieve methods of Maynard and Tao, we prove a general result on gaps between primes in the context of multidimensional Hecke equidistribution. As an application, for any fixed 0 < < 12 , we prove the existence of infinitely many bounded gaps between primes of the form p = a + b such that |a| < √p. Furthermore, for certai...
متن کاملBounded gaps between products of distinct primes
*Correspondence: [email protected] 2Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Full list of author information is available at the end of the article Abstract Let r ≥ 2 be an integer. We adapt the Maynard–Tao sieve to produce the asymptotically best-known bounded gaps between products of r distinct primes. Our result applies to positive-density subsets of the pr...
متن کاملBounded gaps between products of special primes
In their breakthrough paper in 2006, Goldston, Graham, Pintz, and Yıldırım 1 proved several results about bounded gaps between products of two distinct primes. Frank 2 Thorne expanded on this result, proving bounded gaps in the set of square-free numbers with 3 r prime factors for any r ≥ 2, all of which are in a given set of primes. His results yield 4 applications to divisibility of class num...
متن کاملSmall Gaps between Primes: the Gpy Method and Recent Advancements over It
In the works with D. A. Goldston and J. Pintz (GPY), the use of short divisor sums has led to strong results concerning the existence of small gaps between primes. The results depend on the information about the distribution of primes in arithmetic progressions, specifically on the range where the estimate of the Bombieri-Vinogradov Theorem is taken to hold. Let pn denote the n-th prime. We obt...
متن کامل